Number of Elements in a Set
For Two Sets:
Let:
• n(A): Number of elements in Set A
• n(B): Number of elements in Set B
• n(A∪B): Number of elements in the union of A and B
• n(A∩B): Number of elements common to both A and B
Venn Regions:
Region | Set Expression | Meaning | Formula |
---|---|---|---|
A1 | A ∩ B′ | Only A | n(A) − n(A ∩ B) |
A2 | A ∩ B | A and B | n(A ∩ B) |
A3 | B ∩ A′ | Only B | n(B) − n(A ∩ B) |
A4 | A′ ∩ B′ | Neither A nor B | n(Ω) − n(A ∪ B) |
Union Formula:
n(A ∪ B) = n(A) + n(B) − n(A ∩ B)
• If A and B are disjoint: n(A ∩ B) = 0
⇒ n(A ∪ B) = n(A) + n(B)
For Three Sets:
Let the sets be A, B, and C.
Venn Regions:
Region | Set Expression | Meaning | Formula |
---|---|---|---|
A1 | A ∩ B′ ∩ C′ | Only A | n(A) − n(A ∩ B) − n(A ∩ C) + n(A ∩ B ∩ C) |
A2 | B ∩ A′ ∩ C′ | Only B | n(B) − n(A ∩ B) − n(B ∩ C) + n(A ∩ B ∩C) |
A3 | C ∩ A′ ∩ B′ | Only C | n(C) − n(A ∩ C) − n(B ∩ C) + n(A ∩ B ∩ C) |
A4 | A ∩ C ∩ B′ | A and C only | n(A ∩ C) − n(A ∩ B ∩ C) |
A5 | A ∩ B ∩ C′ | A and B only | n (A ∩ B) − n(A ∩ B ∩ C) |
A6 | B ∩ C ∩ A′ | B and C only | n(B ∩ C) − n(A ∩ B ∩ C) |
A7 | A ∩ B ∩ C | All three | n(A ∩ B ∩ C) |
A8 | A′ ∩ B′ ∩ C′ | None of them | n(Ω) − n(A ∪ B ∪ C) |
Union Formula:
n(A ∪ B ∪ C) = n(A) + n(B) + n(C) − n (A ∩ B) − n(A ∩ C) − n(B ∩ C) + n(A ∪ B ∪ C)
Comments
Post a Comment